THE ROGERS-RAMANUJAN IDENTITIES: FROM SUMS, HOPEFULLY TO PRODUCTS

Shashank Kanade

University of Alberta

RR1

Partitions of n whose adjacent parts differ by at least 2

RR1

Partitions of n whose adjacent parts differ by at least 2 are equinumerous with

RR1

Partitions of n whose adjacent parts differ by at least 2 are equinumerous with partitions of n with each part \equiv 1,4 (mod 5)

RR1

Partitions of n whose adjacent parts differ by at least 2 are equinumerous with partitions of n with each part $\equiv 1,4 \pmod{5}$

RR 2

Partitions of *n* whose adjacent parts differ by at least 2 and

RR1

Partitions of n whose adjacent parts differ by at least 2 are equinumerous with partitions of n with each part $\equiv 1,4 \pmod{5}$

RR₂

Partitions of n whose adjacent parts differ by at least 2 and whose smallest part is at least 2

RR1

Partitions of n whose adjacent parts differ by at least 2 are equinumerous with partitions of n with each part $\equiv 1,4 \pmod{5}$

RR 2

Partitions of n whose adjacent parts differ by at least 2 and whose smallest part is at least 2 are equinumerous with partitions of n with each part $\equiv 2,3 \pmod{5}$

ROGERS-RAMANUJAN IDENTITIES - EXAMPLE

Rogers-Ramanujan 1

ROGERS-RAMANUJAN IDENTITIES - EXAMPLE

Rogers-Ramanujan 1

Rogers-Ramanujan 2

$$9 = 9$$
 $9 = 7 + 2$ $= 3 + 3 + 3$ $= 6 + 3$ $= 3 + 2 + 2 + 2$

ROGERS-RAMANUJAN IDENTITIES - GENERATING FUNCTIONS

d(n) Number of partitions of n with adjacent parts differing by at least 2.

ROGERS-RAMANUJAN IDENTITIES - GENERATING FUNCTIONS

d(n) Number of partitions of n with adjacent parts differing by at least 2.

RR1

$$\sum_{n\geq 0} d(n)q^n = \frac{1}{(1-q)(1-q^4)(1-q^6)(1-q^9)\cdots}$$

d(n) Number of partitions of n with adjacent parts differing by at least 2.

RR1

$$\sum_{n\geq 0} d(n)q^n = \frac{1}{(1-q)(1-q^4)(1-q^6)(1-q^9)\cdots}$$
$$= \sum_{\lambda\geq 0} (-1)^{\lambda} \cdot \frac{q^{\lambda(5\lambda-1)/2}(1+q^{\lambda})}{\prod_{n\geq 1} (1-q^n)}$$

d(n) Number of partitions of *n* with adjacent parts differing by at least 2.

RR1

$$\sum_{n\geq 0} d(n)q^n = \frac{1}{(1-q)(1-q^4)(1-q^6)(1-q^9)\cdots}$$

$$= \sum_{\lambda\geq 0} (-1)^{\lambda} \cdot \frac{q^{\lambda(5\lambda-1)/2}(1+q^{\lambda})}{\prod_{n\geq 1} (1-q^n)}$$
... Using Jacobi triple product identity

SUMS TO PRODUCTS

SETUP

$$\mathcal{A} = \mathbb{C}[x_{-1}, x_{-2}, \dots]$$

$$I_{\Lambda_0} = \text{Ideal generated by } \left\{ r_{-n} = \sum_{i=1}^{n-1} x_{-i} x_{-n+i}; \ n \ge 2 \right\}.$$

 $r_{-3} = X_{-1}X_{-2} + X_{-2}X_{-1}$

$$\mathcal{A} = \mathbb{C}[x_{-1}, x_{-2}, \dots]$$

$$I_{\Lambda_0} = \text{Ideal generated by } \left\{ r_{-n} = \sum_{i=1}^{n-1} x_{-i} x_{-n+i}; n \ge 2 \right\}.$$

$$r_{-2} = x_{-1} x_{-1} = x_{-1}^2$$

$$r_{-4} = x_{-1}x_{-3} + x_{-2}x_{-2} + x_{-3}x_{-1} = 2x_{-1}x_{-3} + x_{-2}^2$$

 $r_{-5} = x_{-1}x_{-4} + x_{-2}x_{-3} + x_{-3}x_{-2} + x_{-4}x_{-1} = 2x_{-1}x_{-4} + 2x_{-2}x_{-3}$
and so on . . .

 $=2X_{-1}X_{-2}$

$$\mathcal{A} = \mathbb{C}[x_{-1}, x_{-2}, \dots]$$

$$I_{\Lambda_0} = \text{Ideal generated by } \left\{ r_{-n} = \sum_{i=1}^{n-1} x_{-i} x_{-n+i}; \ n \ge 2 \right\}.$$

$$r_{-2} = x_{-1} x_{-1} = x_{-1}^2$$

$$r_{-2} = x_{-1}x_{-1}$$
 $r_{-3} = x_{-1}x_{-2} + x_{-2}x_{-1}$
 $r_{-4} = x_{-1}x_{-3} + x_{-2}x_{-2} + x_{-3}x_{-1}$
 $r_{-5} = x_{-1}x_{-4} + x_{-2}x_{-3} + x_{-3}x_{-2} + x_{-4}x_{-1} = 2x_{-1}x_{-4} + 2x_{-2}x_{-3}$
and so on . . .

Definition (actually, a Theorem of Cal-L-M): Principal Subspace

We call $W_{\Lambda_0} = \mathcal{A}/I_{\Lambda_0}$ a principal subspace.

$$r_{-2} = x_{-1}x_{-1} = x_{-1}^{2}$$

$$r_{-3} = x_{-1}x_{-2} + x_{-2}x_{-1} = 2x_{-1}x_{-2}$$

$$r_{-4} = x_{-1}x_{-3} + x_{-2}x_{-3} + x_{-3}x_{-1} = x_{-2}^{2} + 2x_{-1}x_{-3}$$

$$r_{-5} = x_{-1}x_{-4} + x_{-2}x_{-3} + x_{-3}x_{-2} + x_{-4}x_{-1} = 2x_{-2}x_{-3} + 2x_{-1}x_{-4}$$

$$r_{-2} = x_{-1}x_{-1} = x_{-1}^{2}$$

$$r_{-3} = x_{-1}x_{-2} + x_{-2}x_{-1} = 2x_{-1}x_{-2}$$

$$r_{-4} = x_{-1}x_{-3} + x_{-2}x_{-3} + x_{-3}x_{-1} = x_{-2}^{2} + 2x_{-1}x_{-3}$$

$$r_{-5} = x_{-1}x_{-4} + x_{-2}x_{-3} + x_{-3}x_{-2} + x_{-4}x_{-1} = 2x_{-2}x_{-3} + 2x_{-1}x_{-4}$$

and so on

· $W_{\Lambda_0} = \mathcal{A}/I_{\Lambda_0}$ has a *basis* of monomials satisfying difference-2 conditions.

$$r_{-2} = x_{-1}x_{-1} = x_{-1}^{2}$$

$$r_{-3} = x_{-1}x_{-2} + x_{-2}x_{-1} = 2x_{-1}x_{-2}$$

$$r_{-4} = x_{-1}x_{-3} + x_{-2}x_{-3} + x_{-3}x_{-1} = x_{-2}^{2} + 2x_{-1}x_{-3}$$

$$r_{-5} = x_{-1}x_{-4} + x_{-2}x_{-3} + x_{-3}x_{-2} + x_{-4}x_{-1} = 2x_{-2}x_{-3} + 2x_{-1}x_{-4}$$

- · $W_{\Lambda_0} = \mathcal{A}/I_{\Lambda_0}$ has a *basis* of monomials satisfying difference-2 conditions.
- · For a proof using Gröbner bases, See Bruschek-Mourtada-Schepers '13. (A slightly different space.)

$$r_{-2} = x_{-1}x_{-1} = x_{-1}^{2}$$

$$r_{-3} = x_{-1}x_{-2} + x_{-2}x_{-1} = 2x_{-1}x_{-2}$$

$$r_{-4} = x_{-1}x_{-3} + x_{-2}x_{-3} + x_{-3}x_{-1} = x_{-2}^{2} + 2x_{-1}x_{-3}$$

$$r_{-5} = x_{-1}x_{-4} + x_{-2}x_{-3} + x_{-3}x_{-2} + x_{-4}x_{-1} = 2x_{-2}x_{-3} + 2x_{-1}x_{-4}$$

- · $W_{\Lambda_0} = \mathcal{A}/I_{\Lambda_0}$ has a *basis* of monomials satisfying difference-2 conditions.
- For a proof using Gröbner bases, See
 Bruschek-Mourtada-Schepers '13. (A slightly different space.)
- · In this paper, it comes up while calculating Hilbert-Poincaré series of arc space of a double point.

$$r_{-2} = x_{-1}x_{-1} = x_{-1}^{2}$$

$$r_{-3} = x_{-1}x_{-2} + x_{-2}x_{-1} = 2x_{-1}x_{-2}$$

$$r_{-4} = x_{-1}x_{-3} + x_{-2}x_{-3} + x_{-3}x_{-1} = x_{-2}^{2} + 2x_{-1}x_{-3}$$

$$r_{-5} = x_{-1}x_{-4} + x_{-2}x_{-3} + x_{-3}x_{-2} + x_{-4}x_{-1} = 2x_{-2}x_{-3} + 2x_{-1}x_{-4}$$

- · $W_{\Lambda_0} = \mathcal{A}/I_{\Lambda_0}$ has a *basis* of monomials satisfying difference-2 conditions.
- · For a proof using Gröbner bases, See Bruschek-Mourtada-Schepers '13. (A slightly different space.)
- · In this paper, it comes up while calculating Hilbert-Poincaré series of arc space of a double point.
- · Shows up in a lot of different problems more later.

PRODUCTS?

Question

Where are the products?

PRODUCTS?

Question

Where are the products?

Idea (J. Lepowsky)

First use the Jacobi triple product identity

$$\frac{1}{(1-q)(1-q^4)(1-q^6)(1-q^9)\cdots} = \sum_{\lambda \ge 0} (-1)^{\lambda} \cdot \frac{q^{\lambda(5\lambda-1)/2}(1+q^{\lambda})}{\prod_{n \ge 1} (1-q^n)}$$

alternating sum with each series having non-negative coefficients

PRODUCTS?

Question

Where are the products?

Idea (J. Lepowsky)

First use the Jacobi triple product identity

$$\frac{1}{(1-q)(1-q^4)(1-q^6)(1-q^9)\cdots} = \sum_{\lambda \ge 0} (-1)^{\lambda} \cdot \frac{q^{\lambda(5\lambda-1)/2}(1+q^{\lambda})}{\prod_{n \ge 1} (1-q^n)}$$

alternating sum with each series having non-negative coefficients

Could be explained via Euler-Poincaré principle applied to a resolution.

$$\cdots C_3 = \bigoplus_{i_1,i_2 \leq -2} \mathcal{A} \xi_{i_1,\,i_2} \xrightarrow{\partial_3} \ C_2 = \bigoplus_{i_1 \leq -2} \mathcal{A} \xi_{i_1} \xrightarrow{\partial_2} \ C_1 = \mathcal{A} \xrightarrow{\partial_1} \ C_0 = W_{\Lambda_0} \twoheadrightarrow \ 0$$

$$\cdots C_3 = \bigoplus_{i_1,i_2 \leq -2} \mathcal{A} \xi_{i_1,\,i_2} \xrightarrow{\partial_3} C_2 = \bigoplus_{i_1 \leq -2} \mathcal{A} \xi_{i_1} \xrightarrow{\partial_2} C_1 = \mathcal{A} \xrightarrow{\partial_1} C_0 = W_{\Lambda_0} \twoheadrightarrow 0$$

$$\cdot \xi_{\cdots,i,\cdots,j,\cdots} = \cdots \wedge \xi_i \wedge \cdots \wedge \xi_j \wedge \cdots = -\xi_{\cdots,j,\cdots,i,\cdots}$$

$$\cdots C_3 = \bigoplus_{i_1, i_2 \leq -2} \mathcal{A} \xi_{i_1, i_2} \xrightarrow{\partial_3} C_2 = \bigoplus_{i_1 \leq -2} \mathcal{A} \xi_{i_1} \xrightarrow{\partial_2} C_1 = \mathcal{A} \xrightarrow{\partial_1} C_0 = W_{\Lambda_0} \twoheadrightarrow 0$$

- $\cdot \xi_{\cdots,i,\cdots,j,\cdots} = \cdots \wedge \xi_i \wedge \cdots \wedge \xi_j \wedge \cdots = -\xi_{\cdots,j,\cdots,i,\cdots}$
- $\cdot \ \partial_1 \text{ is the projection map } \mathcal{A} \longrightarrow \mathcal{A}/I_{\Lambda_0}.$

$$\cdots C_3 = \bigoplus_{i_1,i_2 \leq -2} \mathcal{A} \xi_{i_1,i_2} \xrightarrow{\partial_3} C_2 = \bigoplus_{i_1 \leq -2} \mathcal{A} \xi_{i_1} \xrightarrow{\partial_2} C_1 = \mathcal{A} \xrightarrow{\partial_1} C_0 = W_{\Lambda_0} \twoheadrightarrow 0$$

- $\cdot \xi_{\cdots,i,\cdots,j,\cdots} = \cdots \wedge \xi_i \wedge \cdots \wedge \xi_j \wedge \cdots = -\xi_{\cdots,j,\cdots,i,\cdots}$
- $\cdot \ \partial_1$ is the projection map $\mathcal{A} \longrightarrow \mathcal{A}/I_{\Lambda_0}.$

$$\partial_{k+1}(\xi_{-i_1,-i_2,\dots,-i_k}) = \sum_{n=1}^{K} (-1)^{n-1} \cdot r_{-i_n} \cdot \xi_{-i_1,-i_2,\dots,\widehat{-i_n},\dots,-i_k}$$

$$\partial(r_{-i}) = 0$$

$$\partial(\xi_{-i}) = r_{-i}$$

$$\partial(\xi_{-i,-j}) = r_{-i}\xi_{-j} - r_{-j}\xi_{-i}$$

$$\cdots C_3 = \bigoplus_{i_1,i_2 \leq -2} \mathcal{A} \xi_{i_1,\,i_2} \xrightarrow{\partial_3} C_2 = \bigoplus_{i_1 \leq -2} \mathcal{A} \xi_{i_1} \xrightarrow{\partial_2} C_1 = \mathcal{A} \xrightarrow{\partial_1} C_0 = W_{\Lambda_0} \twoheadrightarrow 0$$

- $\xi_{\cdots,i,\cdots,j,\cdots} = \cdots \wedge \xi_i \wedge \cdots \wedge \xi_j \wedge \cdots = -\xi_{\cdots,j,\cdots,i,\cdots}$
- $\cdot \ \partial_1$ is the projection map $\mathcal{A} \longrightarrow \mathcal{A}/I_{\Lambda_0}.$

$$H_n = \operatorname{Ker}(\partial_n)/\operatorname{Im}(\partial_{n+1})$$

$$H_0 = H_1 = 0.$$

$$\cdots C_3 = \bigoplus_{i_1,i_2 \leq -2} \mathcal{A}\xi_{i_1,i_2} \xrightarrow{\partial_3} C_2 = \bigoplus_{i_1 \leq -2} \mathcal{A}\xi_{i_1} \xrightarrow{\partial_2} C_1 = \mathcal{A} \xrightarrow{\partial_1} C_0 = W_{\Lambda_0} \twoheadrightarrow 0$$

$$\cdots C_3 = \bigoplus_{i_1,i_2 \leq -2} \mathcal{A}\xi_{i_1,i_2} \xrightarrow{\partial_3} C_2 = \bigoplus_{i_1 \leq -2} \mathcal{A}\xi_{i_1} \xrightarrow{\partial_2} C_1 = \mathcal{A} \xrightarrow{\partial_1} C_0 = W_{\Lambda_0} \twoheadrightarrow 0$$

Interpretation

$$\partial_2: \bigoplus_{i_1 \leq -2} \mathcal{A}\xi_{i_1} \longrightarrow \mathcal{A}$$

 $Ker(\partial_2)$ is precisely the the space of relations amongst the r_n s.

$$\cdots C_3 = \bigoplus_{i_1,i_2 \leq -2} \mathcal{A}\xi_{i_1,i_2} \xrightarrow{\partial_3} C_2 = \bigoplus_{i_1 \leq -2} \mathcal{A}\xi_{i_1} \xrightarrow{\partial_2} C_1 = \mathcal{A} \xrightarrow{\partial_1} C_0 = W_{\Lambda_0} \twoheadrightarrow 0$$

Interpretation

$$\partial_2: \bigoplus_{i_1 \leq -2} \mathcal{A}\xi_{i_1} \longrightarrow \mathcal{A}$$

 $Ker(\partial_2)$ is precisely the the space of relations amongst the r_n s.

$$\partial_3: \bigoplus_{i_1,i_2 \leq -2} \mathcal{A}\xi_{i_1i_2} \longrightarrow \bigoplus_{i_1 \leq -2} \mathcal{A}\xi_{i_1}$$

Im(∂_3) is precisely the the space of *trivial* relations amongst the r_n s: $r_n \cdot r_m - r_m \cdot r_n = 0$.

$$\cdots C_3 = \bigoplus_{i_1, i_2 \leq -2} \mathcal{A}\xi_{i_1, i_2} \xrightarrow{\partial_3} C_2 = \bigoplus_{i_1 \leq -2} \mathcal{A}\xi_{i_1} \xrightarrow{\partial_2} C_1 = \mathcal{A} \xrightarrow{\partial_1} C_0 = W_{\Lambda_0} \twoheadrightarrow 0$$

Interpretation

$$\partial_2: \bigoplus_{i_1 \leq -2} \mathcal{A}\xi_{i_1} \longrightarrow \mathcal{A}$$

 $Ker(\partial_2)$ is precisely the the space of relations amongst the r_n s.

$$\partial_3: \bigoplus_{i_1,i_2 \leq -2} \mathcal{A}\xi_{i_1i_2} \longrightarrow \bigoplus_{i_1 \leq -2} \mathcal{A}\xi_{i_1}$$

Im(∂_3) is precisely the the space of *trivial* relations amongst the r_n s: $r_n \cdot r_m - r_m \cdot r_n = 0$.

 $H_2 = \text{Ker}(\partial_2)/\text{Im}(\partial_3)$ measures the space of "non-trivial" relations.

EULER-POINCARÉ PRINCIPLE

$$\cdots C_3 = \bigoplus_{i_1,i_2 \leq -2} \mathcal{A} \xi_{i_1,\,i_2} \xrightarrow{\partial_3} \ C_2 = \bigoplus_{i_1 \leq -2} \mathcal{A} \xi_{i_1} \xrightarrow{\partial_2} \ C_1 = \mathcal{A} \xrightarrow{\partial_1} \ C_0 = W_{\Lambda_0} \twoheadrightarrow \ 0$$

EULER-POINCARÉ PRINCIPLE

$$\cdots C_3 = \bigoplus_{i_1,i_2 \leq -2} \mathcal{A}\xi_{i_1,\,i_2} \xrightarrow{\partial_3} C_2 = \bigoplus_{i_1 \leq -2} \mathcal{A}\xi_{i_1} \xrightarrow{\partial_2} C_1 = \mathcal{A} \xrightarrow{\partial_1} C_0 = W_{\Lambda_0} \twoheadrightarrow 0$$

Euler-Poincaré principle

With χ being the "dimension" (actually, the (x, q)-character)

$$\chi(W_{\Lambda_0}; x, q) = \sum_{n \geq 1} (-1)^{n+1} \left(\chi(C_n; x, q) - \chi(H_n; x, q) \right).$$

EULER-POINCARÉ PRINCIPLE

$$\cdots C_3 = \bigoplus_{i_1,i_2 \leq -2} \mathcal{A}\xi_{i_1,\,i_2} \xrightarrow{\partial_3} C_2 = \bigoplus_{i_1 \leq -2} \mathcal{A}\xi_{i_1} \xrightarrow{\partial_2} C_1 = \mathcal{A} \xrightarrow{\partial_1} C_0 = W_{\Lambda_0} \twoheadrightarrow 0$$

Euler-Poincaré principle

With χ being the "dimension" (actually, the (x, q)-character)

$$\chi(W_{\Lambda_0}; x, q) = \sum_{n \geq 1} (-1)^{n+1} \left(\chi(C_n; x, q) - \chi(H_n; x, q) \right).$$

The Problem

Find the precise structure of H_n s and calculate $\chi(H_n; x, q)$.

$$L_{-1} \cdot X_{-j} = j \cdot X_{-j-1}$$

$$L_{-1} \cdot x_{-j} = j \cdot x_{-j-1}$$

$$L_{-1} \cdot r_{-j} = (j-1) \cdot r_{-j-1}$$

$$L_{-1} \cdot (\xi_{-i_1, \dots, -i_k}) = (i_1 - 1)\xi_{-i_1 - 1, -i_2, \dots, -i_k} + (i_2 - 1)\xi_{-i_1, -i_2 - 1, \dots, -i_k}$$

$$+ \dots + (i_k - 1)\xi_{-i_1, -i_2, \dots, -i_{k-1}}$$

$$L_{-1} \cdot x_{-j} = j \cdot x_{-j-1}$$

$$L_{-1} \cdot r_{-j} = (j-1) \cdot r_{-j-1}$$

$$L_{-1} \cdot (\xi_{-i_1, \dots, -i_k}) = (i_1 - 1)\xi_{-i_1 - 1, -i_2, \dots, -i_k} + (i_2 - 1)\xi_{-i_1, -i_2 - 1, \dots, -i_k}$$

$$+ \dots + (i_k - 1)\xi_{-i_1, -i_2 \dots, -i_k - 1}$$

$$L_{-1}(a \cdot c) = L_{-1}(a)c + aL_{-1}(c) \text{ for all } a \in \mathcal{A}, c \in C_j$$

$$L_{-1} \cdot x_{-j} = j \cdot x_{-j-1}$$

$$L_{-1} \cdot r_{-j} = (j-1) \cdot r_{-j-1}$$

$$L_{-1} \cdot (\xi_{-i_1, \dots, -i_k}) = (i_1 - 1)\xi_{-i_1 - 1, -i_2, \dots, -i_k} + (i_2 - 1)\xi_{-i_1, -i_2 - 1, \dots, -i_k}$$

$$+ \dots + (i_k - 1)\xi_{-i_1, -i_2 \dots, -i_{k-1}}$$

$$L_{-1}(a \cdot c) = L_{-1}(a)c + aL_{-1}(c)$$
 for all $a \in \mathcal{A}, c \in C_j$

$$[\partial, L_{-1}] = 0$$

$$L_{-1} \operatorname{Ker}(\partial) \subset \operatorname{Ker}(\partial)$$

 $L_{-1} \operatorname{Im}(\partial) \subset \operatorname{Im}(\partial)$

There is an automorphism σ of \mathcal{A} , that can be extended to the C_j s:

There is an automorphism σ of \mathcal{A} , that can be extended to the C_j s:

$$\sigma(x_{-1}) = 0,$$

$$\sigma(x_{-i}) = x_{-i+1}$$

$$\sigma(r_{-i}) = r_{-i+2}, \ \sigma(r_{-2}) = 0, \ \sigma(r_{-3}) = 0$$

$$\sigma(\xi_{-i_1,\dots,-i_k}) = \xi_{-i_1+2,\dots,-i_k+2}$$

There is an automorphism σ of A, that can be extended to the C_j s:

$$\sigma(x_{-1}) = 0,$$

$$\sigma(x_{-i}) = x_{-i+1}$$

$$\sigma(r_{-i}) = r_{-i+2}, \ \sigma(r_{-2}) = 0, \ \sigma(r_{-3}) = 0$$

$$\sigma(\xi_{-i_1,\dots,-i_k}) = \xi_{-i_1+2,\dots,-i_k+2}$$

$$\sigma(a \cdot c) = \sigma(a)\sigma(c) \text{ for all } a \in \mathcal{A}, c \in C_j$$

There is an automorphism σ of A, that can be extended to the C_j s:

$$\sigma(x_{-1}) = 0,$$

$$\sigma(x_{-i}) = x_{-i+1}$$

$$\sigma(r_{-i}) = r_{-i+2}, \ \sigma(r_{-2}) = 0, \ \sigma(r_{-3}) = 0$$

$$\sigma(\xi_{-i_1,\dots,-i_k}) = \xi_{-i_1+2,\dots,-i_k+2}$$

$$\sigma(a \cdot c) = \sigma(a)\sigma(c) \text{ for all } a \in \mathcal{A}, c \in C_j$$

$$[\partial,\sigma]=0$$

$$\sigma \operatorname{Ker}(\partial) \subset \operatorname{Ker}(\partial)$$
$$\sigma \operatorname{Im}(\partial) \subset \operatorname{Im}(\partial)$$

Some obvious elements in the $Ker(\partial_2)$:

$$\mu_{-4} = 2x_{-2}\xi_{-2} - x_{-1}\xi_{-3}$$
$$\partial(\mu_{-4}) = 2x_{-2} \cdot x_{-1}^2 - x_{-1} \cdot 2x_{-1}x_{-2} = 0$$

$$\partial \big(L_{-1}^s\cdot \mu_{-4}\big)=0 \ \text{ for } s\in \mathbb{N}.$$

Some obvious elements in the $Ker(\partial_2)$:

$$\mu_{-4} = 2x_{-2}\xi_{-2} - x_{-1}\xi_{-3}$$
$$\partial(\mu_{-4}) = 2x_{-2} \cdot x_{-1}^2 - x_{-1} \cdot 2x_{-1}x_{-2} = 0$$

$$\partial(L_{-1}^s \cdot \mu_{-4}) = 0 \text{ for } s \in \mathbb{N}.$$

$$\mu_{-4} = 2x_{-2}\xi_{-2} - x_{-1}\xi_{-3}$$

$$\mu_{-5} = 4x_{-3}\xi_{-2} + x_{-2}\xi_{-3} - 2x_{-1}\xi_{-4}$$

$$\mu_{-6} = 6x_{-4}\xi_{-2} + 3x_{-3}\xi_{-3} - 3x_{-1}\xi_{-5}$$

$$\mu_{-7} = 8x_{-5}\xi_{-2} + 5x_{-4}\xi_{-3} + 2x_{-3}\xi_{-4} - x_{-2}\xi_{-5} - 4x_{-1}\xi_{-6}$$

$$\mu_{-8} = 10x_{-6}\xi_{-2} + 7x_{-5}\xi_{-3} + 4x_{-4}\xi_{-4} + x_{-3}\xi_{-5} - 2x_{-2}\xi_{-6} - 5x_{-1}\xi_{-7}$$

and so on...

Theorem (K.)

The second homology H_2 is generated by the elements $L_{-1}^s \cdot \mu_{-4}$ for $s \in \mathbb{N}$.

Theorem (K.)

The second homology H_2 is generated by the elements $L_{-1}^s \cdot \mu_{-4}$ for $s \in \mathbb{N}$.

Remark

The proof is very similar to the proof of presentation of W_{Λ_0} in Calinescu-Lepowsky-Milas '08.

Uses the "minimal counter-example" technique.

CONTEXT

$$\mathfrak{g} = \mathfrak{sl}_2 = \mathbb{C}\{X_{\alpha}, \alpha, X_{-\alpha}\}\$$

 $\langle a, b \rangle = \text{Tr}(ab)$

$$\mathfrak{g} = \mathfrak{sl}_2 = \mathbb{C}\{x_{\alpha}, \alpha, x_{-\alpha}\}$$
$$\langle a, b \rangle = \text{Tr}(ab)$$
$$\mathfrak{n} = \mathbb{C}x_{\alpha}$$

$$\mathfrak{g} = \mathfrak{sl}_2 = \mathbb{C}\{x_{\alpha}, \alpha, x_{-\alpha}\}$$

$$\langle a, b \rangle = \operatorname{Tr}(ab)$$

$$\mathfrak{n} = \mathbb{C} x_{\alpha}$$

$$\widehat{\mathfrak{g}} = \mathfrak{g} \otimes \mathbb{C}[t, t^{-1}] \oplus \mathbb{C}c$$

$$[x \otimes t^n, y \otimes t^m] = [x, y] \otimes t^{m+n} + \langle x, y \rangle n\delta_{m+n,0}c$$

$$[c, \widehat{\mathfrak{g}}] = 0$$

$$\widehat{\mathfrak{g}} \cong A_1^{(1)}$$

$$\mathfrak{g} = \mathfrak{sl}_2 = \mathbb{C}\{x_{\alpha}, \alpha, x_{-\alpha}\}
\langle a, b \rangle = \operatorname{Tr}(ab)
\mathfrak{n} = \mathbb{C} x_{\alpha}$$

$$\widehat{\mathfrak{g}} = \mathfrak{g} \otimes \mathbb{C}[t, t^{-1}] \oplus \mathbb{C}c
[x \otimes t^n, y \otimes t^m] = [x, y] \otimes t^{m+n} + \langle x, y \rangle n\delta_{m+n,0}c
[c, \widehat{\mathfrak{g}}] = 0
\widehat{\mathfrak{g}} \cong A_1^{(1)}$$

$$\overline{\mathfrak{n}} = \mathfrak{n} \otimes \mathbb{C}[t, t^{-1}] \subset \widehat{\mathfrak{g}}
\overline{\mathfrak{n}}_- = \mathfrak{n} \otimes t^{-1}\mathbb{C}[t^{-1}] \subset \widehat{\mathfrak{g}}
[\overline{\mathfrak{n}}_-, \overline{\mathfrak{n}}_-] = 0.$$

 $L(\Lambda)$: Irreducible, integrable $\widehat{\mathfrak{g}}$ — module generated by highest wt. vector v_{Λ} $W_{\Lambda} := \mathcal{U}(\overline{\mathfrak{n}}) \cdot v_{\Lambda} \cong \mathcal{U}(\overline{\mathfrak{n}}_{-}) \cdot v_{\Lambda}$

 $L(\Lambda)$: Irreducible, integrable $\widehat{\mathfrak{g}}$ — module generated by highest wt. vector v_{Λ} $W_{\Lambda} := \mathcal{U}(\overline{\mathfrak{n}}) \cdot v_{\Lambda} \cong \mathcal{U}(\overline{\mathfrak{n}}_{-}) \cdot v_{\Lambda}$ $\mathcal{U}(\overline{\mathfrak{n}}_{-}) \cong \mathbb{C}[x_{-1}, x_{-2}, \dots] = \mathcal{A}$

$$L(\Lambda)$$
: Irreducible, integrable $\widehat{\mathfrak{g}}$ — module generated by highest wt. vector v_{Λ} $W_{\Lambda} := \mathcal{U}(\overline{\mathfrak{n}}) \cdot v_{\Lambda} \cong \mathcal{U}(\overline{\mathfrak{n}}_{-}) \cdot v_{\Lambda}$ $\mathcal{U}(\overline{\mathfrak{n}}_{-}) \cong \mathbb{C}[x_{-1}, x_{-2}, \dots] = \mathcal{A}$ $f_{\Lambda} : \mathcal{U}(\overline{\mathfrak{n}}_{-}) \longrightarrow W_{\Lambda}$ $1 \mapsto v_{\Lambda}$

$$L(\Lambda)$$
: Irreducible, integrable $\widehat{\mathfrak{g}}$ — module generated by highest wt. vector v_{Λ}

$$W_{\Lambda} := \mathcal{U}(\overline{\mathfrak{n}}) \cdot v_{\Lambda} \cong \mathcal{U}(\overline{\mathfrak{n}}_{-}) \cdot v_{\Lambda}$$

$$\mathcal{U}(\bar{\mathfrak{n}}_{-})\cong \mathbb{C}[x_{-1},x_{-2},\dots]=\mathcal{A}$$

$$f_{\Lambda}: \mathcal{U}(\bar{\mathfrak{n}}_{-}) \longrightarrow W_{\Lambda}$$

 $1 \mapsto V_{\Lambda}$

Theorem (Calinescu-Lepowsky-Milas '08)

$$\operatorname{Ker}(f_{\Lambda_0}) = I_{\Lambda_0} \text{ and } \operatorname{Ker}(f_{\Lambda_1}) = I_{\Lambda_0} + \mathcal{A}x_{-1}.$$

$$\longrightarrow E_2 = \langle v_{r_0 r_1 \cdot \Lambda_0} \rangle \longrightarrow E_1 = \langle v_{r_0 \cdot \Lambda_0} \rangle \longrightarrow E_0 = \langle v_{\Lambda_0} \rangle \longrightarrow L_{\Lambda_0}$$

$$\longrightarrow \bigoplus_{i,j \leq -2} \mathcal{A}\xi_{i,j} \longrightarrow \bigoplus_{i \leq -2} \mathcal{A}\xi_{i} \longrightarrow \mathcal{A} \longrightarrow W_{\Lambda_0}$$

$$\longrightarrow E_2 = \langle v_{r_0 r_1 \cdot \Lambda_0} \rangle \longrightarrow E_1 = \langle v_{r_0 \cdot \Lambda_0} \rangle \longrightarrow E_0 = \langle v_{\Lambda_0} \rangle \longrightarrow L_{\Lambda_0}$$

$$\longrightarrow \bigoplus_{i,j \leq -2} \mathcal{A}\xi_{i,j} \longrightarrow \bigoplus_{i \leq -2} \mathcal{A}\xi_{i} \longrightarrow \mathcal{A} \longrightarrow W_{\Lambda_0}$$

$$v_{r_0\Lambda_0}\mapsto x_\alpha^2(-1)v_{\Lambda_0}=x_{-1}^2v_{\Lambda_0}$$

$$\longrightarrow E_2 = \langle v_{r_0 r_1 \cdot \Lambda_0} \rangle \longrightarrow E_1 = \langle v_{r_0 \cdot \Lambda_0} \rangle \longrightarrow E_0 = \langle v_{\Lambda_0} \rangle \longrightarrow L_{\Lambda_0}$$

$$\longrightarrow \bigoplus_{i,j \leq -2} \mathcal{A}\xi_{i,j} \longrightarrow \bigoplus_{i \leq -2} \mathcal{A}\xi_{i} \longrightarrow \mathcal{A} \longrightarrow W_{\Lambda_0}$$

$$\begin{aligned} v_{r_0\Lambda_0} &\mapsto X_{\alpha}^2(-1)v_{\Lambda_0} = X_{-1}^2v_{\Lambda_0} \\ v_{r_0\Lambda_0} &\sim \xi_{-2} \end{aligned}$$

$$\longrightarrow E_2 = \langle v_{r_0 r_1 \cdot \Lambda_0} \rangle \longrightarrow E_1 = \langle v_{r_0 \cdot \Lambda_0} \rangle \longrightarrow E_0 = \langle v_{\Lambda_0} \rangle \longrightarrow L_{\Lambda_0}$$

$$\longrightarrow \bigoplus_{i,j \leq -2} \mathcal{A}\xi_{i,j} \longrightarrow \bigoplus_{i \leq -2} \mathcal{A}\xi_{i} \longrightarrow \mathcal{A} \longrightarrow W_{\Lambda_0}$$

$$v_{r_0\Lambda_0} \mapsto x_{\alpha}^2(-1)v_{\Lambda_0} = x_{-1}^2 v_{\Lambda_0}$$
$$v_{r_0\Lambda_0} \sim \xi_{-2}$$

$$V_{r_0r_1\cdot\Lambda_0}\mapsto 2X_{\alpha}(-2)V_{r_0\cdot\Lambda_0}-X_{\alpha}(-1)L(-1)V_{r_0\cdot\Lambda_0}$$

$$\longrightarrow E_2 = \langle v_{r_0r_1 \cdot \Lambda_0} \rangle \longrightarrow E_1 = \langle v_{r_0 \cdot \Lambda_0} \rangle \longrightarrow E_0 = \langle v_{\Lambda_0} \rangle \longrightarrow L_{\Lambda_0}$$

$$\longrightarrow \bigoplus_{i,j \leq -2} \mathcal{A}\xi_{i,j} \longrightarrow \bigoplus_{i \leq -2} \mathcal{A}\xi_{i} \longrightarrow \mathcal{A} \longrightarrow W_{\Lambda_0}$$

$$v_{r_0\Lambda_0} \mapsto x_{\alpha}^2(-1)v_{\Lambda_0} = x_{-1}^2 v_{\Lambda_0}$$
$$v_{r_0\Lambda_0} \sim \xi_{-2}$$

$$v_{r_0r_1\cdot\Lambda_0} \mapsto 2x_{\alpha}(-2)v_{r_0\cdot\Lambda_0} - x_{\alpha}(-1)L(-1)v_{r_0\cdot\Lambda_0}$$

$$\sim 2x_{-2}\xi_{-2} - x_{-1}L_{-1}\xi_{-2}$$

$$\longrightarrow E_2 = \langle v_{r_0r_1 \cdot \Lambda_0} \rangle \longrightarrow E_1 = \langle v_{r_0 \cdot \Lambda_0} \rangle \longrightarrow E_0 = \langle v_{\Lambda_0} \rangle \longrightarrow L_{\Lambda_0}$$

$$\longrightarrow \bigoplus_{i,j \leq -2} \mathcal{A}\xi_{i,j} \longrightarrow \bigoplus_{i \leq -2} \mathcal{A}\xi_{i} \longrightarrow \mathcal{A} \longrightarrow W_{\Lambda_0}$$

$$\begin{aligned} v_{r_0\Lambda_0} &\mapsto X_{\alpha}^2(-1)v_{\Lambda_0} = X_{-1}^2v_{\Lambda_0} \\ v_{r_0\Lambda_0} &\sim \xi_{-2} \end{aligned}$$

$$v_{r_0r_1.\Lambda_0} \mapsto 2x_{\alpha}(-2)v_{r_0.\Lambda_0} - x_{\alpha}(-1)L(-1)v_{r_0.\Lambda_0}$$
$$\sim 2x_{-2}\xi_{-2} - x_{-1}L_{-1}\xi_{-2} = 2x_{-2}\xi_{-2} - x_{-1}\xi_{-3}$$

$$\longrightarrow E_2 = \langle v_{r_0 r_1 \cdot \Lambda_0} \rangle \longrightarrow E_1 = \langle v_{r_0 \cdot \Lambda_0} \rangle \longrightarrow E_0 = \langle v_{\Lambda_0} \rangle \longrightarrow L_{\Lambda_0}$$

$$\longrightarrow \bigoplus_{i,j \leq -2} \mathcal{A}\xi_{i,j} \longrightarrow \bigoplus_{i \leq -2} \mathcal{A}\xi_{i} \longrightarrow \mathcal{A} \longrightarrow W_{\Lambda_0}$$

$$v_{r_0\Lambda_0} \mapsto x_{\alpha}^2(-1)v_{\Lambda_0} = x_{-1}^2 v_{\Lambda_0}$$
$$v_{r_0\Lambda_0} \sim \xi_{-2}$$

$$v_{r_0r_1.\Lambda_0} \mapsto 2x_{\alpha}(-2)v_{r_0.\Lambda_0} - x_{\alpha}(-1)L(-1)v_{r_0.\Lambda_0}$$
$$\sim 2x_{-2}\xi_{-2} - x_{-1}L_{-1}\xi_{-2} = 2x_{-2}\xi_{-2} - x_{-1}\xi_{-3} = \mu_{-4}$$

Stable unreduced Khovanov homology.

Stable unreduced Khovanov homology.

$$\operatorname{Kh}(T(n,\infty)) = \lim_{m \to \infty} q^{-(n-1)(m-1)+1} \operatorname{Kh}(T(n,m)).$$

This limit exists (Stošić).

Stable unreduced Khovanov homology.

$$\operatorname{Kh}(T(n,\infty)) = \lim_{m \to \infty} q^{-(n-1)(m-1)+1} \operatorname{Kh}(T(n,m)).$$

This limit exists (Stošić).

Conjecture (Gorsky-Oblomkov-Rasmussen '12)

 $\operatorname{Kh}(T(n,\infty))$ is dual to the homology of the Koszul complex determined by the elements r_{-2},\ldots,r_{-n-1} . (Note: the gradings are different than ours.)

Every Koszul complex is a dg-algebra:

$$\xi_{-i_1,\dots,-i_j}=\xi_{-i_1}\wedge\dots\wedge\xi_{-i_j}.$$

Every Koszul complex is a dg-algebra:

$$\xi_{-i_1,\ldots,-i_j}=\xi_{-i_1}\wedge\cdots\wedge\xi_{-i_j}.$$

$$Z = \bigoplus_{n \ge 0} \operatorname{Ker}(\partial_n)$$
 is a sub-algebra with

$$B = \bigoplus_{n \geq 0} \operatorname{Im}(\partial_n)$$
, a two-sided ideal.

Every Koszul complex is a dg-algebra:

$$\xi_{-i_1,\ldots,-i_j}=\xi_{-i_1}\wedge\cdots\wedge\xi_{-i_j}.$$

$$Z = \bigoplus_{n \ge 0} \operatorname{Ker}(\partial_n)$$
 is a sub-algebra with

$$B = \bigoplus_{n \geq 0} \operatorname{Im}(\partial_n)$$
, a two-sided ideal.

$$H = \bigoplus_{n \ge 0} H_n$$
 is a graded algebra.

Conjecture (Gorsky-Oblomkov-Rasmussen '12)

For $T(n, \infty)$, H is generated as by the elements $\mu_{-4}, \dots, \mu_{-n-2}$, with the defining relations being

$$x(z)^{2} = 0$$

$$x(z)\mu(z) = 0$$

$$x''(z)\mu(z) - x'(z)\mu'(z) = 0$$

$$\mu(z)\mu'(z) = 0,$$

recall that
$$\mu(z) = 2x'(z)\xi(z) - x(z)\xi'(z)$$
.

Conjecture (Gorsky-Oblomkov-Rasmussen '12)

For $T(n, \infty)$, H is generated as by the elements $\mu_{-4}, \dots, \mu_{-n-2}$, with the defining relations being

$$x(z)^{2} = 0$$

$$x(z)\mu(z) = 0$$

$$x''(z)\mu(z) - x'(z)\mu'(z) = 0$$

$$\mu(z)\mu'(z) = 0,$$

recall that
$$\mu(z) = 2x'(z)\xi(z) - x(z)\xi'(z)$$
.

 σ : unreduced \longrightarrow reduced.

$$E_0 \longrightarrow L(\Lambda_0)$$

 $R = \mathcal{U}(\mathfrak{g}) x_{-1}^2 \mathbf{1} \subset E_0$
 $\bar{R} = \text{ Coeffs of } r(x) = Y(r, x), r \in R$

$$E_{0} \longrightarrow L(\Lambda_{0})$$

$$R = \mathcal{U}(\mathfrak{g})x_{-1}^{2}\mathbf{1} \subset E_{0}$$

$$\bar{R} = \text{ Coeffs of } r(x) = Y(r,x), r \in R$$

$$\bar{R}\mathbf{1} \otimes E_{0} \longrightarrow E_{0}$$

$$u \otimes v \longmapsto u_{-1}v$$

$$Y(u,x) \otimes Y(v,x) \longmapsto {}^{\bullet}Y(u,x)Y(v,x)^{\bullet}, u \in \bar{R}\mathbf{1}$$

$$E_{0} \longrightarrow L(\Lambda_{0})$$

$$R = \mathcal{U}(\mathfrak{g})x_{-1}^{2}\mathbf{1} \subset E_{0}$$

$$\bar{R} = \text{ Coeffs of } r(x) = Y(r,x), r \in R$$

$$\bar{R}\mathbf{1} \otimes E_{0} \longrightarrow E_{0}$$

$$u \otimes v \longmapsto u_{-1}v$$

$$Y(u,x) \otimes Y(v,x) \longmapsto \mathbf{Y}(u,x)Y(v,x)\mathbf{,} u \in \bar{R}\mathbf{1}$$

Meurman-Primc '99, Primc '02

The kernel of the map above is generated, in some sense, by:

$$\frac{d}{dx}\left(x_{\theta}(x)^{2}\right)\otimes x_{\theta}(x)-2(x_{\theta}(z)^{2})\otimes \frac{d}{dx}x_{\theta}(z)$$

$$E_0 \longrightarrow L(\Lambda_0)$$

$$R = \mathcal{U}(\mathfrak{g})x_{-1}^2 \mathbf{1} \subset E_0$$

$$\bar{R} = \text{ Coeffs of } r(x) = Y(r, x), r \in R$$

$$\bar{R}\mathbf{1} \otimes E_0 \longrightarrow E_0$$

$$u \otimes v \longmapsto u_{-1}v$$

$$Y(u, x) \otimes Y(v, x) \longmapsto {}^{\bullet}_{\bullet}Y(u, x)Y(v, x){}^{\bullet}_{\bullet}, u \in \bar{R}\mathbf{1}$$

Meurman-Primc '99, Primc '02

The kernel of the map above is generated, in some sense, by:

$$\frac{d}{dx} (x_{\theta}(x)^{2}) \otimes x_{\theta}(x) - 2(x_{\theta}(z)^{2}) \otimes \frac{d}{dx} x_{\theta}(z)$$

$$L(-1)x_{-1}^{2} \mathbf{1} \otimes x_{-1} \mathbf{1} - 2x_{-1}^{2} \mathbf{1} \otimes L(-1)x_{-1} \mathbf{1}$$

$$E_{0} \longrightarrow L(\Lambda_{0})$$

$$R = \mathcal{U}(\mathfrak{g})x_{-1}^{2}\mathbf{1} \subset E_{0}$$

$$\bar{R} = \text{ Coeffs of } r(x) = Y(r,x), r \in R$$

$$\bar{R}\mathbf{1} \otimes E_{0} \longrightarrow E_{0}$$

$$u \otimes v \longmapsto u_{-1}v$$

$$Y(u,x) \otimes Y(v,x) \longmapsto {}^{\bullet}\mathbf{1}Y(u,x)Y(v,x), u \in \bar{R}\mathbf{1}$$

Meurman-Primc '99, Primc '02

The kernel of the map above is generated, in some sense, by:

$$\frac{d}{dx} (x_{\theta}(x)^{2}) \otimes x_{\theta}(x) - 2(x_{\theta}(z)^{2}) \otimes \frac{d}{dx} x_{\theta}(z)$$

$$L(-1)x_{-1}^{2} \mathbf{1} \otimes x_{-1} \mathbf{1} - 2x_{-1}^{2} \mathbf{1} \otimes L(-1)x_{-1} \mathbf{1}$$

$$\sim L_{-1} \xi_{-2} \cdot x_{-1} - 2\xi_{-2} \cdot L_{-1} x_{-1} = \xi_{-3} \cdot x_{-1} - 2\xi_{-2} \cdot x_{-2} = \mu_{-4}.$$

