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RR1

Partitions of n whose adjacent parts differ by at least 2
are equinumerous with
partitions of n with each part =1,4 (mod 5)

RR 2

Partitions of n whose adjacent parts differ by at least 2 and
whose smallest part is at least 2

are equinumerous with

partitions of n with each part =2,3 (mod 5)



ROGERS-RAMANUJAN IDENTITIES - EXAMPLE

Rogers-Ramanujan 1

9=9 9=9
=8+1 =6+T+1+1
=742 = b4 b
=6+3 =44 THT4+T1+1+1

54+3+1 =11+ 1+ T+ +1+1+ 141



ROGERS-RAMANUJAN IDENTITIES - EXAMPLE

Rogers-Ramanujan 1

9=9 9=9
=841 =6+T+1+1
=742 = b4 b
=6+3 =44 THT4+T1+1+1
=54+341 =TT+ T4+T+ 141414141

Rogers-Ramanujan 2

9=9 9=7+42

742 =3+34+3
6+3 =3+242+2
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ROGERS-RAMANUJAN IDENTITIES - GENERATING FUNCTIONS

d(n) Number of partitions of n with adjacent parts differing
by at least 2.

RR1

B 1
249 = A=)

n>0

A(SA%)/Z(‘] + C]A)

_ a0 4g
=L e

A>0

... Using Jacobi triple product identity
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A= (C[qu,X,Q,...]

n—1
In, = |deal generated by {r_n = Zx_,-x_n+,-; n> 2} .

i=1

r 5 = X_1X_j =X,

F_3 = X_1X_3 + X_2X_1 = 2X_1X_y

4 = X_qaX_3 + X_2X_2 + X_3X_1 = 2X_1X_3 + X%,

o5 = X_4X_4 + X_2X_3 +X_3X_3 + X_4X_1 = 2X_1X_4 + 2X_pX_3
andsoon...

Definition (actually, a Theorem of Cal-L-M): Principal Subspace

We call Wa, = A/Ip, a principal subspace.
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SETUP

Recall:
r o= X_1X_1 =x,
r_3 = X_1X_9 4+ X_2X_1 = 2X_1X_y
4 = X_1X_3 4+ X_2X_3 + X_3X_1 = X2, 4 2X_1X_3

F5 =X 1X_4 + X 2X 3+ X 3X 2+ X 4X 1=2X2X 3+2X 1X_4
andsoon....

- W, = A/lp, has a basis of monomials satisfying difference-2
conditions.

- For a proof using Grobner bases, See
Bruschek-Mourtada-Schepers “13. (A slightly different space.)

- In this paper, it comes up while calculating Hilbert-Poincaré series
of arc space of a double point.

- Shows up in a lot of different problems — more later.
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PRODUCTS?

Question

Where are the products?

Idea (). Lepowsky)

First use the Jacobi triple product identity

1 B N qA(SA%)/Z(»I_'_q)\)
ey e e el D i e )

= alternating sum with each series

having non-negative coefficients

Could be explained via Euler-Poincaré principle applied to a
resolution.
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@ Af,’h,'zi) @Afﬁ—> i Co W/\O*» 0
1, <=2 <=2
. 5.“7,-7.“71-7”. = .../\5)./\.../\@./\... = 75.“71-7
- 0y is the projection map A — A/la,.
k
’ 6k+7(§*i1,*iz,'" ,*ih) - 2:1(_1)'771 Ty gfiw,fiz,m iy —ig”
n=
o(r_)=0
i) =r_

O(&—i—j) = r—i—j — r_jé_
-~ Hy = Ker(n)/Im(0n41)
Ho = H, = 0.
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KOSZUL COMPLEX

o G= P A, D =P A B =42 C=Wa, > 0

i1, <=2 (<=2

Interpretation
0: P Agi,— A
ih<—2
Ker(9,) is precisely the the space of relations amongst the r,s.
o: P Ac,— P A
i, <—2 <=2
Im(9s) is precisely the the space of trivial relations amongst the r,s:
rm'rm_rm'rn:O.

H, = Ker(8,)/Im(8;) measures the space of “non-trivial” relations.
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EULER-POINCARE PRINCIPLE

13 O
i G= P A, D =@ A B G=A2 Co=Wa, > 0
i,ip <=2 <=2

Euler-Poincaré principle

With x being the “dimension” (actually, the (x, g)-character)

X(Waoi X @) = > (=)™ (x(Cai X @) — x(Hn; X, Q) -

n>1

The Problem

Find the precise structure of H,s and calculate x(Hn; X, ).

1
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Loq-X_j=]-X_j
\LA =011 \
Lq e (€ipyene —in) = (1 = i1, —ipyeee s—ip + (2 = iy —iy—1,0 =i
e (e = N =iy =i

‘ L_a(a-c)=L_q(a)c+al_q(c)forallaec A, ce( ‘
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MAIN RESULTS

There is an automorphism ¢ of A, that can be extended to the s:

o(x_1) =0,
o(X_i) = X_it1
\ o(r—i) =r-iys, o(r-2) = 0, a(r_3):0‘
(§-ip, —ip) = i, ,—ip42

‘a(a -¢)=o(a)o(c)forallae A,ce G ‘

oKer(9) C Ker(9)
olm(9) C Im(9)
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Some obvious elements in the Ker(d,):
Pt = 2X_2§2 — X_1€—3

8(/1,,4) =2X_y 'X2,1 —X_1-2X_1X_>,=0

(L%, p_y)=0 forseN.
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MAIN RESULTS

Some obvious elements in the Ker(d,):

Pt = 2X_2§2 — X_1€—3
8(/1,,4) =2X_y 'X2,1 —X_1-2X_1X_>,=0

(L%, p_y)=0 forseN.

Hot = 2X_2§_p — X_1&_3

pos = 4X_3§_o+ X_ 263 —2X_1&_4

e = 6X_4& 7+ 3X 38 3 —3X_1€ 5

p—7 = 8X_5€ 2 +5X_4§ 3+2X 36 4 — X 2§ 5 —4X_ 16 6

p—g = 10X_6€_p + 7X_563 + 4X_s€—s + X_3E_5 — 2X_2€_¢ — 5X_1&_7

and so on ... "
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MAIN RESULTS

Theorem (K.)

The second homology H, is generated by the elements L° ;- u_, for
seN

Remark

The proof is very similar to the proof of presentation of W, in
Calinescu-Lepowsky-Milas ‘08.

Uses the “minimal counter-example” technique.
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1. PRINCIPAL SUBSPACES

g= 5[2 - C{X()ua7x—0t}
(a,b) = Tr(ab)

n=Cx,

§=9®C[t,t7"]®Cc
ot y@t" =y @t 4+ (X,Y)Ndmin,0C
[c.g] =0
g=Ay

i=n@C[tt")|cyg
fi_=n®t 'C[t”"|Cg

[i_,i_] = 0.
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1. PRINCIPAL SUBSPACES

L(A) : Irreducible, integrable g — module
generated by highest wt. vector v
Wy = U(ﬁ) = U(ﬁ_) - VA

UR-) = Clx_1,X—2,...]= A

fA : U(ﬁ,) — Wa

1+ Vpa

Theorem (Calinescu-Lepowsky-Milas ‘08)

Ker(fa,) = In, and Ker(fa,) = I, + Ax_1.



2. GARLAND-LEPOWSKY RESOLUTION

— b= <Vi’0f1'/\o> — b= <V"0'/\o> — ko= <V/\o> E— L/\o

— P AL, — P Ag > A > Wa,
ij<—2 i<—2

19



2. GARLAND-LEPOWSKY RESOLUTION

— b= <Vi’0f1'/\o> — b= <V"0'/\o> — ko= <V/\o> E— L/\o

— P AL, — P Ag > A > Wa,
ij<—2 i<—2

2 2
Vioho Xa(_1)VAo = X4V



2. GARLAND-LEPOWSKY RESOLUTION

— b= <Vi’0f1'/\o> — b= <V"0'/\o> — ko= <V/\o> E— L/\o

— P AL, — P Ag > A > Wa,
ij<—2 i<—2

2 2
Vioho Xa(_1)VAo = X4V

VroA Ni 2

19



2. GARLAND-LEPOWSKY RESOLUTION

— b= <Vi’0f1'/\o> — b= <V"0'/\o> — ko= <V/\o> E— L/\o

— P AL, — P Ag > A > Wa,
ij<—2 i<—2

2 2
Vioho Xa(_1)VAo = X4V

VroA Ni 2

Vier-ng F 2Xa(—=2)Vig-ng — Xa(—T)L(=1)Vr, A,

19



2. GARLAND-LEPOWSKY RESOLUTION

— b= <Vi’0f1'/\o> — b= <V"0'/\o> — ko= <V/\o> E— L/\o

— P AL, — P Ag > A > Wa,
ij<—2 i<—2

2 2
Vioho Xa(_1)VAo = X4V

VroA Ni 2

Vier-ng F 2Xa(—=2)Vig-ng — Xa(—T)L(=1)Vr, A,

~2X 282 — X gL 1€

19



2. GARLAND-LEPOWSKY RESOLUTION

— b= <Vi’0f1'/\o> — b= <V"0'/\o> — ko= <V/\o> E— L/\o

— P AL, — P Ag > A > Wa,
ij<—2 i<—2

2 2
Vioho Xa(_1)VAo = X4V

VroA Ni 2

Vier-ng F 2Xa(—=2)Vig-ng — Xa(—T)L(=1)Vr, A,

~2X 280 =X gl 1€ = 2X 28 2 —X1€3

19



2. GARLAND-LEPOWSKY RESOLUTION

— b= <Vi’0f1'/\o> — b= <V"0'/\o> — ko= <V/\o> E— L/\o

— P AL, — P Ag > A > Wa,
ij<—2 i<—2

2 2
Vioho Xa(_1)VAo = X4V

VroA Ni 2

Vier-ng F 2Xa(—=2)Vig-ng — Xa(—T)L(=1)Vr, A,

~2X 280 =X gl 4€ 2 =2X 38 2 =X 1€ 3= 14
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3. RELATIONS TO KHOVANOV HOMOLOGY OF TORUS KNOTS

Stable unreduced Khovanov homology.
Kh(T(n,c0)) = lim g~ =DM=DHKR(T(n, m)).
— 00

This limit exists (Stosic).
Conjecture (Gorsky-Oblomkov-Rasmussen “12)

Kh(T(n, 00)) is dual to the homology of the Koszul complex
determined by the elements r_,,...,r_,_s. (Note: the gradings are
different than ours.)
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Every Koszul complex is a dg-algebra:

Eipyemiy =iy A oo NEL

Z = P Ker(d,) is a sub-algebra with
n>0

B =P Im(0»), a two-sided ideal.

n>0

H= EB H, is a graded algebra.

n>0
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3. RELATIONS TO KHOVANOV HOMOLOGY OF TORUS KNOTS

Conjecture (Gorsky-Oblomkov-Rasmussen “12)

For T(n,00), H is generated as by the elements pu_4, ..., p_p_s, wWith
the defining relations being

x(z)* =0

X(2)u(z) =0

X"(2)u(z) — X' (2)p'(2) = 0
u(2)i'(2) =0,

recall that u(z) = 2X'(2)€(2) — x(2)¢'(2).
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3. RELATIONS TO KHOVANOV HOMOLOGY OF TORUS KNOTS

Conjecture (Gorsky-Oblomkov-Rasmussen “12)

For T(n,00), H is generated as by the elements pu_4, ..., p_p_s, wWith
the defining relations being

x(z)* =0

X(2)u(z) =0

X"(2)u(z) — X' (2)p'(2) = 0
u(2)i'(2) =0,

recall that u(z) = 2X'(2)€(2) — x(2)¢'(2).

o: unreduced — reduced.

22
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4. RELATIONS TO MEURMAN-PRIMC'S WORK

Eo — L(Ao)
R =U(g)x* 41 C Eo
R = Coeffs of r(x) = Y(r,x),r € R
R1® Ey — Ep
UGV U_qV
Y(u,x) ® Y(v,x) — $Y(u,x)Y(v,X)s, u € R1

Meurman-Primc ‘99, Primc ‘02

The kernel of the map above is generated, in some sense, by:

9 (x6(07) @00 — 2006(2F) © 2 02

L(=1)X2 1@ Xx_11 — 22 1@ L(—=1)x_11

~Lq8 o X =28 5 LaX =8 3-X1—282-X_2=p_4. .



QUESTIONS?



	Introduction
	Sums to Products
	Context

